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Let G be a graph. The eccentric connectivity index ξ(G) is defined as ξ(G)  where deg(u) 
denotes the degree of vertex u and ε(u) is the largest distance between u and any other vertex v of G. In this paper, exact 
formulas for the eccentric connectivity index of one pentagonal carbon nanocones are given. 
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1. Introduction 
 
One pentagonal carbon nanocones, Fig. 1, originally 

discovered by Ge and Sattler in 1994 [1]. These are 
constructed from a graphene sheet by removing a 60° 
wedge and joining the edges produces a cone with a single 
pentagonal defect at the apex.  

We now recall some algebraic definitions that will be 
used in the paper. Topological indices are graph invariants 
and are used for Quantitative Structure- Activity 
Relationship (QSAR) and Quantitative Structure-Property 
Relationship (QSPR) studies, [2,3]. Many topological 
indices have been defined and several of them have found 
applications as means to model physical, chemical, 
pharmaceutical and other properties of molecules. 

Let G be a simple molecular graph without directed 
and multiple edges and without loops, the vertex and edge-
sets of which are represented by V(G) and E(G), 
respectively. A topological index of a graph G is a 
numeric quantity related to G. The oldest topological 
index is the Wiener index which introduced by Harold 
Wiener [4]. The name of topological index was introduced 
by Haro Hosoya [5]. We encourage the reader to consult 
[6-8] for historical background material as well as basic 
computational techniques. 
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Fig. 1. The one-pentagonal carbon nanocone CNC5[3]. 

 
The distance d(u,v) between two vertices u and v of a 

graph G is defined as the length of a shortest path 
connecting them. The summation of these numbers over 
all edges of G is called the Wiener index of G [4]. For a 
given vertex u of V(G) its eccentricity, ε(u), is the largest 
distance between u and any other vertex v of G. The 
maximum eccentricity over all vertices of G is called the 
diameter of G and denoted by D(G) and the minimum 
eccentricity among the vertices of G is called radius of G 
and denoted by R(G). The eccentric connectivity index 
ξ(G) of is defined as ξ(G)  [9-
11]. The mathematical properties of this topological index 
are studied in some recent papers [12-18]. 

This paper addresses the problem of computing the 
eccentric connectivity index of one pentagonal carbon 
nanocones. We encourage the readers to consult papers 
[19-21] for computational techniques related to carbon 
nanocones, as well as [22-28] for background materials. 
Our notation is standard and taken mainly from the 
standard books of graph theory.  

 
 
2. Main results and discussion 
 
In [19-21], one of the present authors (ARA) 

computed some distance based topological indices of 
nanocones. So, it is natural to ask about other graph 
invariants of these nanotubes. In this section the eccentric 
connectivity index of one-pentagonal carbon nanocone 
C[n] = CNC5[n] containing 2n + 1 layers is computed. 
From Fig. 1, it is clear that  
|V(C[n])| = 5[1 + 1 + 2 + 2 +… + n + n + (n + 1)] = 5(n + 

1)2, 
|E(C[n])| = 5[1 + 3 + 5 + … + (2n + 1) + 1 + 2 + 3 + … + 

n] 
= 5[(n + 1)2 + n(n + 1)/2] = 5/2(n + 1)(3n + 2). 

 
In the following lemma, the diameter of this nanocone 

is computed. 
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Lemma 1. R(C[n]) = 2n + 2 and D(C[n]) = 4n + 2. 
 
Proof. Suppose u is a vertex of the central pentagon 

of C[n]. Then from Fig. 1, one can see that there exists a 
vertex v of degree 2 such that d(u,v) = 2n + 2 and so ε(u) = 
2n + 2. On the other hand, there exists another vertex w of 
degree 2 such that d(u,w) = 2n. Therefore, the shortest 
path with maximum length is connecting two vertices of 
degree 2 in C[n]. This implies that D(G) = Max{d(x,y) | 
deg(x) = deg(y) = 2} = 4n + 2 and R(G) = 2n + 2.                                                                                                                                  

The proof of lemma 1, shows that the eccentricities of 
vertices of C[n] are varied between 2n + 2 and 4n + 2. 
From Fig. 1, we can see that if P is the central pentagon of 
C[n] and a and b are two vertices of C[n] such that d(a,P) 

= d(b,P) then ε(a) = ε(b), where d(x,P) = Min{d(x,y) | y ∈ 
V(P)}. Define Ai = {x ∈ C[n] | d(x,P) = i}, 1 ≤ i ≤ 2n + 1. 

From Fig. 1, it is clear that |Ai| = 5  where 

 denotes the greatest integer less than or equal to x. On 
the other hand, the eccentricity of vertices in each layer is 
constant and the number of vertices in the layers 2k and 2k 
+ 1 are the same, 1 ≤ k ≤ n. Thus, the summation of 
eccentricities in the layers 2j and 2j + 1 is tj = [2n + 2 + 2(j 
− 1)] + [2n + 2 + (2(j − 1) + 1)] = 4(n + j) + 1, 1 ≤ j ≤ n. 
Therefore,  

 
ξ(C[n]) = 5  
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